Immunity mini test - ms

QUESTIONSHEET 2

(a) (i) antigens on the dead pathogen detected by (T/B) lymphocytes; specific B lymphocytes clone/divide rapidly by mitosis; plasma cells released to blood; plasma cells secrete antibody into blood; levels fall once all antigens are destroyed;

max 4

- (ii) memory cells formed by first challenge/equivalent allow even greater/faster cloning (and so greater/more antibody release); 1
- (b) influenza virus/pathogen has high rate of mutation; polio/tetanus pathogens have low rate of mutation; mutation changes antigens/proteins on surface of pathogen; antibodies unable to recognise changed antigens/new antibody needed to react with changed antigen;

may

(c) (i) antibodies against tetanus bacteria;

1

(ii) immediate rise due to injection;
 steady fall because liver destroys the antibodies;
 lymphocytes are not stimulated/passive immunity so no new antibodies made;

2

TOTAL 10

IMMUNITY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 4

(a) (i) an antigen; on the surface of a red blood cell;

2

(ii) an antibody; dissolved in blood plasma;

2

(iii) when agglutinin a comes into contact with agglutinogen A/when agglutinin b comes into contact with agglutinogen B; due to incompatible blood transfusion;

red cells are clumped together by agglutinins reacting with agglutinogens;
ref one molecule of agglutinin combines with five molecules of agglutinogen/agglutinin has a valency of five,
which makes clumping very effective;
clumped cells can block small blood vessels causing glomerular/kidney/heart/brain damage/other correct example/
may result in death;

max 4

(b) (i) group B into group A; group A into group B; group AB into group A; group AB into group B;

4

(ii) agglutinins a and b will not clump the red cells in A, B or AB blood; because they are greatly diluted by the greater blood volume of the recipient; would only become a problem if large volumes were transfused;

max 2

IMMUNITY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 6

macrophages congregate in regions of infection in the tissues/ref chemotaxic attraction; engulf bacteria and digest them/ref to lysozyme activity; carry antigens into lymph nodes/spleen/nearest lymphatic tissue; present antigens to T-cells/bind to T-cells with HLA receptors and present antigen to T-cell; thus enable T-cells in lymphatic tissue to become activated by antigens (from elsewhere in the body); means that thousands/millions of cells are available to destroy/disable the antigen; since they are genetically identical they will all recognise/react against the (specific) antigen; leave lymph nodes/spleen/lymphatic tissue/lymph flow/blood stream and move to site of infection; (b) (i) ref amoeboid action/chemotaxis; congregate/collect around bacteria and secrete cytotoxic chemicals over them; ref to specific cytotoxins/lymphotoxin/perforin; also secrete chemicals/lymphokines that stimulate development of more killer T-cells/attract macrophages to the infection; retain the memory of the antigen allowing a rapid response if a second infection occurs/ (ii) 1 gives long term immunity against the antigen; produce an interleukin/lymphokine that induces production of more killer T-cells/aid B-cells/ plasma cells to develop/produce more antibodies;

TOTAL 11

QUESTIONSHEET 7

Feature	T-cells	B-cells	
May produce antibodies	X	1	;
Are classed as small lymphocytes	✓	1	;
Develop in the thymus		X	, costa 1
May secrete interferon	of gentless or cost in	X	oren core. ;
Give passive immunity to the organism which possesses them	x	x	grainer Section 1
Give active immunity to the organisms which possesses them	1	1	;

TOTAL 6

IMMUNITY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 8

- (a) diphtheria bacilli are stable and do not mutate/rarely mutate into new (antigenic) forms;
 influenza viruses constantly mutate to produce new (antigenic) forms;
 new strains of virus appear every few months;
 thus memory cells for diphtheria antigens are effective throughout life but memory cells against influenza may not recognise the new strains;

 max 3
- (b) smallpox virus showed little variation (antigenically) across the world/basically all the same strain/vaccines were available against all strains;

smallpox victims could be easily isolated thus preventing cross infections (of people not yet immunised when cases did occur); difficult to prevent cross infection with cholera/tuberculosis which is in contaminated water/food supplies/malaria with a mosquito

vector;

these organisms have a higher mutation rate which changes their (antigenic) structure more frequently than smallpox; max 3

(c) colostrum/breast milk contains many antibodies produced in the mother; these can be absorbed by the baby via the stomach (from the milk); they can persist in the baby's body for several weeks; giving short term immunity/passive immunity against many diseases/prevalent diseases;

max 3

(d) antibodies/killer T-cells are produced against the Streptococci; some cell surfaces of the infected person may antigenically resemble the Streptococci; for example, β-cells of the islets of Langerhans/thyroid cells/glomeruli; thus body's own antibodies/killer T-cells may destroy these body tissues;

max 3

TOTAL 12

QUESTIONSHEET 9

(a) (i) antigen in lymph/blood/plasma; attaches to antibody on B-cell in lymph node/spleen;
B-cell processes/modifies antigen and presents it on the cell membrane; presented antigen and self HLA antigen can then be recognised by receptors on helper T-cell; this produces substances which stimulate mitosis and differentiation of B-cells/activates B-cells;

max 4

- (ii) many cells produced so that immune response is bigger/sufficient to counter large quantities of antigen; all cells genetically identical so that they respond to the same antigen/immune response is focussed on same antigen;
 2
- (iii) secrete specific antibody against antigen;
 antibody molecules are released from lymph node/spleen into lymph/blood;
 each cell can release up to 2000 antibody molecules per second for about five days/huge quantities of antibodies are released;
 max 2
- (iv) retain memory of specific antigen so that a quicker/ more forceful response can occur to a second infection by the same antigen;
- (b) the primary response involves the activation/multiplication of lymphocytes and elimination of the antigens; takes 7 – 10 days to develop/ levels of antigen rise slowly/ lasts about two weeks; the secondary response involves activation of (long lived) memory cells; takes 2-3 days to develop/levels of antigen rise much higher/can last for months;

max3

TOTAL 12

IMMUNITY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 12

- (a) (i) no response visible from first injection for 10 days, response to second injection visible at 3 4 days; much higher levels of antibody appeared (in the plasma/blood) after the second injection; antibody titre/level falls fairly sharply after 20 days from the first injection, persists/does not fall much after second injection;
 - (ii) memory cells can be immediately activated after second injection allowing a rapid response; after first injection B-cells must receive and modify the antigen and interact with helper T-cells before activation (and this takes time); after first injection a few activated B-cells must undergo many mitoses to produce a clone of several million (antibody producing) plasma cells; several million memory cells probably exist and only need a few mitoses to produce the needed number of plasma cells; thus more plasma cells means more antibody molecules produced more quickly (after second injection); larger number of antibody molecules means that they will persist longer/take longer to be recycled by liver; max 4
- (a) body cells have many surface antigens which differ from person to person; these can provoke an immune response when foreign tissue is transplanted into another person; resulting in T-cell immunity/cellular immunity/production of killer T-cells; which will destroy/damage the transplanted tissue; tissues to be transplanted must have antigens which closely match those of the recipient;

max 3

TOTAL 10

Question 7

(a) enzyme;
makes DNA;
single-stranded(DNA);
using RNA template/starting with RNA/complementary to RNA;
2 max
(b) (i) incorporated into DNA (during replication);
resulting DNA will not replicate/undergo transcription;
2
(ii) idea of attacking virus at different stages in life-cycle/reduces chance of virus developing resistance/need drugs to control side-effects/many different strains of virus/virus changes surface antigens;
1
(c) HIV destroys/damages T-cells;

(more vulnerable to TB with) impaired immunity/immune response;

Total 7

(a) (i)	Molecule/part of molecule/protein/glycoprotein;
	[Allow: polysaccharide]
	Stimulates immune response;
(ii)	These antigens/antibodies have complementary/particular shape;
	[Reject: Active site]
	Allow fitting/binding with (relevant) antibody/antigen;
(b)	Calichaemicin delivered specifically to cancer cells/less likely to/will not harm normal/healthy cells;
	Lower dose of calichaemicin needed to be effective;
	Total 6 mark

Question 9

Ques	stion 9	
(a) (i) protein/immunoglobulin;	
, , ,	specific to antigen;	
	idea of .fit./complementary shape;	2 max
(ii)	1. virus contains antigen;	
	2. virus engulfed by phagocyte/macrophage;	
	3. presents antigen to B-cell;	
	4. memory cells/B-cell becomes activated;	
	5. (divides to) form clones;	
	6. by mitosis;	
	7. plasma cells produce antibodies;	
	8. antibodies specific to antigen;	
	9. correct reference to T-cells/ cytokines;	
	construction of all first during which elemen made there at the recipies.	6 max
(b)	1. antibody gene located using gene probe;	
	2. cut using restriction enzyme;	
	3. at specific base pairs;	
	4. leaving sticky ends/unpaired bases;	
	5. cut maize/DNA /vector using same restriction enzyme;	
	6. join using DNA ligase;	
	7. introduce vector into maize/crop/recombinant DNA into maize;	4 max
(c)	passive; which and all an assess of the street being the angle-series	
	person is not making own antibodies/antibodies not replaced;	
	memory cells not produced;	2 max
(d)	fewer ethical difficulties/	
	less risk of infection;	
	1	