AS Circulation test – mark scheme

1.	(a)	Carriage of oxygen; production of antibodies/killer cells (cell-mediated immunity); engulfing of foreign material/phagocytosis; blood clotting;	[4]
	(b)	 Any two from transport of cell suspension transport of carbon dioxide transport of urea transport of products of digestion transport of ions transport of hormones transport of antibodies distribution of heat around the body contains chemicals involved in blood clotting process formation of tissue fluid 	
		 carries plasma proteins 	[2]
2.	(a)	0.1 second; at that point the pressure in the ventricle exceeds that in the atrium;	[2]
	(b)	0.4 second; at that point the pressure in the aorta exceeds that in the ventricle;	[2]
	(c)	 Any two from immediate increase in pressure as the bicuspid valve bulges into atrium (reducing volume) atrial pressure drops as blood is forced out of the heart (ventricle)/ continued atrial diastole atrial pressure increases (after 0.2 s) as blood is returned to the atrium (from veins) 	[2]
	(d)	Low pressure required in pulmonary circulation to prevent fluid accumulating in the alveoli (and the individual drowning); high pressure required in the body circulation to ensure the formation of tissue fluid (and ultrafiltration in the kidneys); or Any two from • the left ventricle is much more muscular than the right ventricle • since it must pump blood to the body	

• while the right ventricle pumps blood to the neighbouring lungs [2]

3.	(a)	Myogenic means that contraction is initiated within the heart muscle itself takes place without nervous/hormonal stimulation;	?/ [1]
	(b)	(i) Zero (or just after) to 0.12 s/initial tenth of a second (estimated);	[1]
		(ii) The valves are non-conducting/connective tissue between the atria an the ventricles is insulating;	d [1]
		(iii) Impulses pass down the septum (in the bundle of His) and then up the Purkinje (Purkyne) fibres in the walls of the ventricles;	e [1]
		(iv) The ventricles contract from the bottom up and so force blood more readily into the major arteries;	[1]
4.	(a)	Shrew: 4.8 kPa; Human: 2.4 kPa;	[2]
	(b)	The shrew haemoglobin releases oxygen (dissociates) more readily/at a higher ppO_2 ; satisfies the large oxygen requirement for high rate of respiration;	[2]
	(c)	When respiration increases; the ppO_2 decreases/ppCO ₂ increases/pH decreases/temperature increases;	[2]
5.	(a)	Atrioventricular valves are open/atria are not contracting/semi-lunar valves are closed;	[1]
	(b)	X positioned at top-left of the diagram;	[1]
	(c)	A: AVN/atrio-ventricular node;B: bundle of His/Purkinje tissue;	[2]
	(d)	The atria must contract before the ventricles; to ensure that blood leaves the atria/enters the ventricles;	[2]
	(e)	 Any two from ventricular contraction will drive the blood up towards the major arteries for blood to exit the heart ensure complete emptying 	[2]

6.	(a)	Small intestine/ileum/gut;	[1]
	(b)	Aorta;	[1]
	(c)	The right atrium;	[1]

8 Ten points (with at least three from each part)

Haemoglobin:

7.

- haemoglobin is a conjugated/quaternary protein (with haem/iron groups capable of carrying oxygen)
- each haemoglobin molecule can carry four oxygen molecules
- red blood cells are packed with haemoglobin
- haemoglobin exhibits co-operative binding of oxygen/when first oxygen binds the polypeptide chains open up exposing other three haem groups/sigmoid shaped oxygen dissociation curve
- in the lungs, where the partial pressure of oxygen is high, almost all the haemoglobin is carrying oxygen/is in the form of oxyhaemoglobin
- (in actively metabolising tissues) where oxygen is consumed, oxyhaemoglobin dissociates, releasing oxygen
- the first oxygen is not readily released, but once it is other oxygen molecules unload more readily
- at higher carbon dioxide partial pressures, more oxygen will be released by oxyhaemoglobin/less oxygen will remain attached to the haemoglobin, the Bohr effect/oxygen dissociation moves to the right
- its significance is that actively respiring tissue (such as exercising muscle) will increase the carbon dioxide partial pressure which, in turn, will promote the release of more oxygen
- the Bohr effect is caused by carbon dioxide combining with the haemoglobin and bringing about a change in structure which means that it loses some affinity for oxygen
- localised increase in temperature, also a product of actively respiring tissue (such as exercising muscle), will cause the oxygen dissociation curve to move to the right

Myoglobin:

- myoglobin is a conjugated protein with haem groups capable of carrying oxygen
- each myoglobin molecule can carry one oxygen molecule
- red muscle contains myoglobin
- myoglobin has a much higher affinity for oxygen/taking oxygen from oxyhaemoglobin
- at low oxygen partial pressures (while haemoglobin might be mostly dissociated), myoglobin is still well saturated/the dissociation curve lies well to the left
- myoglobin only dissociates when the oxygen partial pressure reaches very low levels
- such as happens during strenuous exercise
- essentially myoglobin acts as an oxygen reserve in muscle tissue
- maintians aerobic respiration for longer