Cells and continuity of cells test – mark scheme

Statement	Prokaryotic cell	Eukaryotic animal cell	Eukaryotic plant cell	
Cell wall is present	1	x x	<i>1 1 1</i>	
Chloroplasts may be present	х			
Deoxyribonucleic acid is present	1			
$rac{1}{2}$] mark off a maximum of [4], for ea	ch incorrect ar	ıswer	[4]	
(a) A: cell wall/middle lamella;				
B: stroma; C: granum/thylakoids/lamellae;				
D: starch grain;			[4]	
(b) Granum width = 20 × 1000 = 20 000 ÷ 30 000 (divide by magnification) =		rsion);	[2]	
(a) (Rough) endoplasmic reticulum;			[1]	
(b) Protein/glycoprotein/liped/cholest	terol;		[1]	
export contents of vesicle from tormation of primary lysosom digestion of material importe breakdown of old/unwanted breakdown of old cells/autoly formation of cell plate in plan maintenance of cell membrance.	nes d by endocytosi organelles/autop ysis nt cells ne	s	[2]	
(d) Golgi apparatus will disappear fro	om cytoplasm;		[1]	
 (e) Any three from the enzymes are initially: transferred in vesicles from fuse with Golgi body at the processed within Golgi body which bud off the mature 	om ER to Golg ne formative (c ody/packaged	i body cis-) face		

[2]

increased chance of artefacts

black and white image

5.	(a)	(i)	Telophase; metaphase; prophase; anaphase;	[4]
		(ii)	C, B, D, A;	[1]
	(b)	(i)	Chiasma(ta); centromere/kinetochore;	[2]
		(ii)	A section of chromatid of one chromosome is exchanged with a chromatid of the other homologue/crossing over of homologous chromosomes; resulting in genetic recombination/genetic information is exchanged/swapped;	
			Reward each point only if the event and consequence are clearly distinguished	[2]
6.	(a)	fold	ochondria are bounded by an envelope in which the inner membrane is ed/forms cristae; r function is to generate ATP/aerobic respiration; i.e. don't write sausage shaped!	s [2]
	(b)	(i)	Caption; scaling of the graph (using the graph paper to maximal effect); labels and units of measurement shown; points accurately plotted [6/7 points for 2 marks/5 points for 1 mar scattergram (points not joined, though line of best fit may be drawn);	' k] ; [6]
		(ii)	Larger cells (up to a certain size) possess a greater number of mitochondria; over a certain size the number of mitochondria remains steady/ fluctuates;	[2]
		(iii)	Any two from • mitochondria divide (replicate themselves) • mitochondria produced during the G1 phase (of interphase) • cells grow during the G phases/interphase • mitochondria generate energy for cell growth (division) • an increase in mitochondria (organelles) increases the size of cells • there is a maximum size to which cells grow • other appropriate response	[2]
		(c)	Any two from • DNA in prokaryotic cells is naked, i.e. is not associated with protein eukaryotic cells is bounded by proteins	in/DN

- IA in
- prokaryotic cells may contain extrachromosomal DNA/plasmids
- prokaryotic cells have smaller (70s) ribosomes/eukaryotic cells have larger (80s) ribosomes
- prokaryotic cells have a cell wall of peptidoglycan/some eukaryotic cells (i.e. animal cells) lack a cell wall/have a cellulose cell wall (plant cells) or chitin cell wall (fungal cells)
- prokaryotic cells are much smaller, rarely exceeding 2 µm in width/eukaryotic cells are generally greater than 5 µm in size
- bacterial cells are prokaryotic while animal, plant and fungal cells are eukaryotic
- other appropriate example

7.	(a)	(i)	A: mitochondrion; B: rough endoplasmic reticulum;	[2]
		(ii)	 Any two from nucleus/nucleolus/nuclear envelope Golgi body/smooth ER vacuole/vesicles/lysosomes centrioles other appropriate response 	[2]
	(b)	(i)	A: protein/glycoprotein B: RNA;	[2]
		(ii)	To produce DNA; from RNA template/which is single stranded;	[2]
	(c)	(i)	Mitosis; Spelling must be precise.	[1]
		(ii)	 Any two from the virus cannot synthesise proteins the virus cannot synthesise nucleic acid it cannot metabolise/synthesise ATP the virus has no cell membrane (to evaginate/extend) the virus cannot undertake mitosis the virus requires a host cell to be active other appropriate response 	[2]

8 (a) Behaviour of chromosomes during a cell cycle with mitosis:

Any eight points

- during G1/and G2 of interphase the chromosomal material is unwound/ appears as chromatin
- some of this is inactive, heterochromatin
- · while some is active, euchromatin
- during the S phase of interphase DNA is replicated
- chromosomes are replicated as new histones bind to the DNA/DNA replication is semi-conservative
- during prophase chromosomes condense (coil and fold up) and become apparent
- each chromosome appears as a pair of chromatids
- during metaphase chromosomes attach to the spindle fibres at the cell equator
- attachment occurs via their centromeres
- during anaphase chromatids are pulled apart/separate
- and move to opposite poles
- during telophase chromosomes begin to unwind again/change to diffuse active form/chromatin
- cells divide into two during cytokinesis halving the amount of chromosomal material
- daughter cells contain the same chromosome number as the parent cell

[8]

(b) Different behaviour of chromosomes during mitosis and meiosis:

Any five points

- mitosis involves the separation of the chromatids into new daughter cells
- thus maintaining the same chromosome number as the parent cell (allow if not awarded in part (a))
- the daughter cells are genetically identical to the parent cell
- during prophase I of meiosis the homologous chromosomes pair to form bivalents
- while chiasmata (points of fusion) occur between chromatids of the homologous pair
- the consequence of this is the recombination/crossing-over of alleles on different chromosomes
- during the first division of meiosis the homologous chromosomes are separated into two intermediary daughter cells
- since the homologous pairs arrive randomly on the spindle/the chromosomes are independently assorted when subsequently separated
- in the second division of meiosis the chromatids are separated
- meiosis results in the production of haploid cells
- which are genetically variable

[5]